Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 629(8010): 136-145, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570684

RESUMEN

Human centromeres have been traditionally very difficult to sequence and assemble owing to their repetitive nature and large size1. As a result, patterns of human centromeric variation and models for their evolution and function remain incomplete, despite centromeres being among the most rapidly mutating regions2,3. Here, using long-read sequencing, we completely sequenced and assembled all centromeres from a second human genome and compared it to the finished reference genome4,5. We find that the two sets of centromeres show at least a 4.1-fold increase in single-nucleotide variation when compared with their unique flanks and vary up to 3-fold in size. Moreover, we find that 45.8% of centromeric sequence cannot be reliably aligned using standard methods owing to the emergence of new α-satellite higher-order repeats (HORs). DNA methylation and CENP-A chromatin immunoprecipitation experiments show that 26% of the centromeres differ in their kinetochore position by >500 kb. To understand evolutionary change, we selected six chromosomes and sequenced and assembled 31 orthologous centromeres from the common chimpanzee, orangutan and macaque genomes. Comparative analyses reveal a nearly complete turnover of α-satellite HORs, with characteristic idiosyncratic changes in α-satellite HORs for each species. Phylogenetic reconstruction of human haplotypes supports limited to no recombination between the short (p) and long (q) arms across centromeres and reveals that novel α-satellite HORs share a monophyletic origin, providing a strategy to estimate the rate of saltatory amplification and mutation of human centromeric DNA.


Asunto(s)
Centrómero , Evolución Molecular , Variación Genética , Animales , Humanos , Centrómero/genética , Centrómero/metabolismo , Proteína A Centromérica/metabolismo , Metilación de ADN/genética , ADN Satélite/genética , Cinetocoros/metabolismo , Macaca/genética , Pan troglodytes/genética , Polimorfismo de Nucleótido Simple/genética , Pongo/genética , Masculino , Femenino , Estándares de Referencia , Inmunoprecipitación de Cromatina , Haplotipos , Mutación , Amplificación de Genes , Alineación de Secuencia , Cromatina/genética , Cromatina/metabolismo , Especificidad de la Especie
2.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958807

RESUMEN

The impact of segmental duplications on human evolution and disease is only just starting to unfold, thanks to advancements in sequencing technologies that allow for their discovery and precise genotyping. The 15q11-q13 locus is a hotspot of recurrent copy number variation associated with Prader-Willi/Angelman syndromes, developmental delay, autism, and epilepsy and is mediated by complex segmental duplications, many of which arose recently during evolution. To gain insight into the instability of this region, we characterized its architecture in human and nonhuman primates, reconstructing the evolutionary history of five different inversions that rearranged the region in different species primarily by accumulation of segmental duplications. Comparative analysis of human and nonhuman primate duplication structures suggests a human-specific gain of directly oriented duplications in the regions flanking the GOLGA cores and HERC segmental duplications, representing potential genomic drivers for the human-specific expansions. The increasing complexity of segmental duplication organization over the course of evolution underlies its association with human susceptibility to recurrent disease-associated rearrangements.


Asunto(s)
Trastorno Autístico , Síndrome de Prader-Willi , Animales , Humanos , Variaciones en el Número de Copia de ADN/genética , Primates/genética , Síndrome de Prader-Willi/genética , Duplicaciones Segmentarias en el Genoma/genética , Trastorno Autístico/genética , Cromosomas Humanos Par 15/genética , Duplicación de Gen
3.
Comput Struct Biotechnol J ; 20: 5813-5823, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36382194

RESUMEN

CRISPR/Cas9 technology has greatly accelerated genome engineering research. The CRISPR/Cas9 complex, a bacterial immune response system, is widely adopted for RNA-driven targeted genome editing. The systematic mapping study presented in this paper examines the literature on machine learning (ML) techniques employed in the prediction of CRISPR/Cas9 sgRNA on/off-target cleavage, focusing on improving support in sgRNA design activities and identifying areas currently being researched. This area of research has greatly expanded recently, and we found it appropriate to work on a Systematic Mapping Study (SMS), an investigation that has proven to be an effective secondary study method. Unlike a classic review, in an SMS, no comparison of methods or results is made, while this task can instead be the subject of a systematic literature review that chooses one theme among those highlighted in this SMS. The study is illustrated in this paper. To the best of the authors' knowledge, no other SMS studies have been published on this topic. Fifty-seven papers published in the period 2017-2022 (April, 30) were analyzed. This study reveals that the most widely used ML model is the convolutional neural network (CNN), followed by the feedforward neural network (FNN), while the use of other models is marginal. Other interesting information has emerged, such as the wide availability of both open code and platforms dedicated to supporting the activity of researchers or the fact that there is a clear prevalence of public funds that finance research on this topic.

4.
Nat Commun ; 13(1): 5609, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153345

RESUMEN

Human centromeres appear as constrictions on mitotic chromosomes and form a platform for kinetochore assembly in mitosis. Biophysical experiments led to a suggestion that repetitive DNA at centromeric regions form a compact scaffold necessary for function, but this was revised when neocentromeres were discovered on non-repetitive DNA. To test whether centromeres have a special chromatin structure we have analysed the architecture of a neocentromere. Centromere repositioning is accompanied by RNA polymerase II recruitment and active transcription to form a decompacted, negatively supercoiled domain enriched in 'open' chromatin fibres. In contrast, centromerisation causes a spreading of repressive epigenetic marks to surrounding regions, delimited by H3K27me3 polycomb boundaries and divergent genes. This flanking domain is transcriptionally silent and partially remodelled to form 'compact' chromatin, similar to satellite-containing DNA sequences, and exhibits genomic instability. We suggest transcription disrupts chromatin to provide a foundation for kinetochore formation whilst compact pericentromeric heterochromatin generates mechanical rigidity.


Asunto(s)
Heterocromatina , Histonas , Centrómero/genética , Cromatina/genética , ADN/genética , ADN Satélite , Heterocromatina/genética , Histonas/genética , Humanos , ARN Polimerasa II/genética
5.
Nature ; 594(7861): 77-81, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33953399

RESUMEN

The divergence of chimpanzee and bonobo provides one of the few examples of recent hominid speciation1,2. Here we describe a fully annotated, high-quality bonobo genome assembly, which was constructed without guidance from reference genomes by applying a multiplatform genomics approach. We generate a bonobo genome assembly in which more than 98% of genes are completely annotated and 99% of the gaps are closed, including the resolution of about half of the segmental duplications and almost all of the full-length mobile elements. We compare the bonobo genome to those of other great apes1,3-5 and identify more than 5,569 fixed structural variants that specifically distinguish the bonobo and chimpanzee lineages. We focus on genes that have been lost, changed in structure or expanded in the last few million years of bonobo evolution. We produce a high-resolution map of incomplete lineage sorting and estimate that around 5.1% of the human genome is genetically closer to chimpanzee or bonobo and that more than 36.5% of the genome shows incomplete lineage sorting if we consider a deeper phylogeny including gorilla and orangutan. We also show that 26% of the segments of incomplete lineage sorting between human and chimpanzee or human and bonobo are non-randomly distributed and that genes within these clustered segments show significant excess of amino acid replacement compared to the rest of the genome.


Asunto(s)
Evolución Molecular , Genoma/genética , Genómica , Pan paniscus/genética , Filogenia , Animales , Factor 4A Eucariótico de Iniciación/genética , Femenino , Genes , Gorilla gorilla/genética , Anotación de Secuencia Molecular/normas , Pan troglodytes/genética , Pongo/genética , Duplicaciones Segmentarias en el Genoma , Análisis de Secuencia de ADN
6.
Funct Integr Genomics ; 19(3): 409-419, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30734132

RESUMEN

Duplicated sequences are an important source of gene evolution and structural variation within mammalian genomes. Using a read depth approach based on next-generation sequencing, we performed a genome-wide analysis of segmental duplications (SDs) and associated copy number variations (CNVs) in the water buffalo (Bubalus bubalis). By aligning short reads of Olimpia (the reference water buffalo) to the UMD3.1 cattle genome, we identified 1,038 segmental duplications comprising 44.6 Mb (equivalent to ~1.73% of the cattle genome) of the autosomal and X chromosomal sequence in the buffalo genome. We experimentally validated 70.3% (71/101) of these duplications using fluorescent in situ hybridization. We also detected a total of 1,344 CNV regions across 14 additional water buffaloes, amounting to 59.8 Mb of variable sequence or the equivalent of 2.2% of the cattle genome. The CNV regions overlap 1,245 genes that are significantly enriched for specific biological functions including immune response, oxygen transport, sensory system and signal transduction. Additionally, we performed array Comparative Genomic Hybridization (aCGH) experiments using the 14 water buffaloes as test samples and Olimpia as the reference. Using a linear regression model, a high Pearson correlation (r = 0.781) was observed between the log2 ratios between copy number estimates and the log2 ratios of aCGH probes. We further designed Quantitative PCR assays to confirm CNV regions within or near annotated genes and found 74.2% agreement with our CNV predictions. These results confirm sub-chromosome-scale structural rearrangements present in the cattle and water buffalo. The information on genome variation that will be of value for evolutionary and phenotypic studies, and may be useful for selective breeding of both species.


Asunto(s)
Búfalos/genética , Variaciones en el Número de Copia de ADN , Duplicaciones Segmentarias en el Genoma , Animales , Genoma
8.
Sci Rep ; 7: 41980, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28155877

RESUMEN

Most evolutionary new centromeres (ENC) are composed of large arrays of satellite DNA and surrounded by segmental duplications. However, the hypothesis is that ENCs are seeded in an anonymous sequence and only over time have acquired the complexity of "normal" centromeres. Up to now evidence to test this hypothesis was lacking. We recently discovered that the well-known polymorphism of orangutan chromosome 12 was due to the presence of an ENC. We sequenced the genome of an orangutan homozygous for the ENC, and we focused our analysis on the comparison of the ENC domain with respect to its wild type counterpart. No significant variations were found. This finding is the first clear evidence that ENC seedings are epigenetic in nature. The compaction of the ENC domain was found significantly higher than the corresponding WT region and, interestingly, the expression of the only gene embedded in the region was significantly repressed.


Asunto(s)
Centrómero/genética , Epigénesis Genética , Evolución Molecular , Animales , Línea Celular , Secuencia Conservada , ADN Satélite/genética , Humanos , Pongo abelii
9.
Proc Natl Acad Sci U S A ; 110(33): 13457-62, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23884656

RESUMEN

We analyzed 83 fully sequenced great ape genomes for mobile element insertions, predicting a total of 49,452 fixed and polymorphic Alu and long interspersed element 1 (L1) insertions not present in the human reference assembly and assigning each retrotransposition event to a different time point during great ape evolution. We used these homoplasy-free markers to construct a mobile element insertions-based phylogeny of humans and great apes and demonstrate their differential power to discern ape subspecies and populations. Within this context, we find a good correlation between L1 diversity and single-nucleotide polymorphism heterozygosity (r(2) = 0.65) in contrast to Alu repeats, which show little correlation (r(2) = 0.07). We estimate that the "rate" of Alu retrotransposition has differed by a factor of 15-fold in these lineages. Humans, chimpanzees, and bonobos show the highest rates of Alu accumulation--the latter two since divergence 1.5 Mya. The L1 insertion rate, in contrast, has remained relatively constant, with rates differing by less than a factor of three. We conclude that Alu retrotransposition has been the most variable form of genetic variation during recent human-great ape evolution, with increases and decreases occurring over very short periods of evolutionary time.


Asunto(s)
Variación Genética , Genoma/genética , Hominidae/genética , Filogenia , Elementos Alu/genética , Animales , Análisis por Conglomerados , Cartilla de ADN/genética , Genómica , Hominidae/clasificación , Humanos , Funciones de Verosimilitud , Elementos de Nucleótido Esparcido Largo/genética , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Especificidad de la Especie
10.
Genome Res ; 23(9): 1373-82, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23825009

RESUMEN

Copy number variation (CNV) contributes to disease and has restructured the genomes of great apes. The diversity and rate of this process, however, have not been extensively explored among great ape lineages. We analyzed 97 deeply sequenced great ape and human genomes and estimate 16% (469 Mb) of the hominid genome has been affected by recent CNV. We identify a comprehensive set of fixed gene deletions (n = 340) and duplications (n = 405) as well as >13.5 Mb of sequence that has been specifically lost on the human lineage. We compared the diversity and rates of copy number and single nucleotide variation across the hominid phylogeny. We find that CNV diversity partially correlates with single nucleotide diversity (r(2) = 0.5) and recapitulates the phylogeny of apes with few exceptions. Duplications significantly outpace deletions (2.8-fold). The load of segregating duplications remains significantly higher in bonobos, Western chimpanzees, and Sumatran orangutans-populations that have experienced recent genetic bottlenecks (P = 0.0014, 0.02, and 0.0088, respectively). The rate of fixed deletion has been more clocklike with the exception of the chimpanzee lineage, where we observe a twofold increase in the chimpanzee-bonobo ancestor (P = 4.79 × 10(-9)) and increased deletion load among Western chimpanzees (P = 0.002). The latter includes the first genomic disorder in a chimpanzee with features resembling Smith-Magenis syndrome mediated by a chimpanzee-specific increase in segmental duplication complexity. We hypothesize that demographic effects, such as bottlenecks, have contributed to larger and more gene-rich segments being deleted in the chimpanzee lineage and that this effect, more generally, may account for episodic bursts in CNV during hominid evolution.


Asunto(s)
Variaciones en el Número de Copia de ADN , Evolución Molecular , Hominidae/genética , Filogenia , Animales , Secuencia de Bases , Eliminación de Gen , Duplicación de Gen , Carga Genética , Genoma Humano , Humanos , Datos de Secuencia Molecular , Linaje , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
11.
Genome Res ; 22(6): 1036-49, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22419167

RESUMEN

Chimpanzee and gorilla chromosomes differ from human chromosomes by the presence of large blocks of subterminal heterochromatin thought to be composed primarily of arrays of tandem satellite sequence. We explore their sequence composition and organization and show a complex organization composed of specific sets of segmental duplications that have hyperexpanded in concert with the formation of subterminal satellites. These regions are highly copy number polymorphic between and within species, and copy number differences involving hundreds of copies can be accurately estimated by assaying read-depth of next-generation sequencing data sets. Phylogenetic and comparative genomic analyses suggest that the structures have arisen largely independently in the two lineages with the exception of a few seed sequences present in the common ancestor of humans and African apes. We propose a model where an ancestral human-chimpanzee pericentric inversion and the ancestral chromosome 2 fusion both predisposed and protected the chimpanzee and human genomes, respectively, to the formation of subtelomeric heterochromatin. Our findings highlight the complex interplay between duplicated sequences and chromosomal rearrangements that rapidly alter the cytogenetic landscape in a short period of evolutionary time.


Asunto(s)
Cromosomas Humanos Par 2 , Evolución Molecular , Heterocromatina/genética , Hominidae/genética , Modelos Genéticos , Secuencia de Aminoácidos , Animales , Análisis Citogenético , ADN Satélite , Duplicación de Gen , Gorilla gorilla/genética , Humanos , Datos de Secuencia Molecular , Pan troglodytes/genética , Filogenia , Telómero/genética
12.
Genome Res ; 21(10): 1640-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21685127

RESUMEN

Structural variation has played an important role in the evolutionary restructuring of human and great ape genomes. Recent analyses have suggested that the genomes of chimpanzee and human have been particularly enriched for this form of genetic variation. Here, we set out to assess the extent of structural variation in the gorilla lineage by generating 10-fold genomic sequence coverage from a western lowland gorilla and integrating these data into a physical and cytogenetic framework of structural variation. We discovered and validated over 7665 structural changes within the gorilla lineage, including sequence resolution of inversions, deletions, duplications, and mobile element insertions. A comparison with human and other ape genomes shows that the gorilla genome has been subjected to the highest rate of segmental duplication. We show that both the gorilla and chimpanzee genomes have experienced independent yet convergent patterns of structural mutation that have not occurred in humans, including the formation of subtelomeric heterochromatic caps, the hyperexpansion of segmental duplications, and bursts of retroviral integrations. Our analysis suggests that the chimpanzee and gorilla genomes are structurally more derived than either orangutan or human genomes.


Asunto(s)
Evolución Molecular , Variación Estructural del Genoma , Gorilla gorilla/genética , Pan troglodytes/genética , Animales , Secuencia de Bases , Mapeo Cromosómico , Estructuras Cromosómicas , Hibridación Genómica Comparativa , Humanos , Hibridación Fluorescente in Situ , Cariotipo , Datos de Secuencia Molecular , Duplicaciones Segmentarias en el Genoma , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...